- Redesign packaging for manufactured products to minimize raw material use or waste.
Occupations with related tasks Save Table: XLSX CSV
- Design nano-based manufacturing processes to minimize water, chemical, or energy use, as well as to reduce waste production.
- Design nanosystems with components such as nanocatalysts or nanofiltration devices to clean specific pollutants from hazardous waste sites.
- Develop catalysis or other green chemistry methods to synthesize nanomaterials, such as nanotubes, nanocrystals, nanorods, or nanowires.
- Provide scientific or technical guidance or expertise to scientists, engineers, technologists, technicians, or others, using knowledge of chemical, analytical, or biological processes as applied to micro and nanoscale systems.
- Supervise technologists or technicians engaged in nanotechnology research or production.
- Conduct research related to a range of nanotechnology topics, such as packaging, heat transfer, fluorescence detection, nanoparticle dispersion, hybrid systems, liquid systems, nanocomposites, nanofabrication, optoelectronics, or nanolithography.
- Synthesize, process, or characterize nanomaterials, using advanced tools or techniques.
- Prepare reports, deliver presentations, or participate in program review activities to communicate engineering results or recommendations.
- Design or conduct tests of new nanotechnology products, processes, or systems.
- Create designs or prototypes for nanosystem applications, such as biomedical delivery systems or atomic force microscopes.
- Write proposals to secure external funding or to partner with other companies.
- Generate high-resolution images or measure force-distance curves, using techniques such as atomic force microscopy.
- Develop processes or identify equipment needed for pilot or commercial nanoscale scale production.
- Provide technical guidance or support to customers on topics such as nanosystem start-up, maintenance, or use.
- Engineer production processes for specific nanotechnology applications, such as electroplating, nanofabrication, or epoxy.
- Apply nanotechnology to improve the performance or reduce the environmental impact of energy products, such as fuel cells or solar cells.
- Identify new applications for existing nanotechnologies.
- Design or engineer nanomaterials, nanodevices, nano-enabled products, or nanosystems, using three-dimensional computer-aided design (CAD) software.
- Design nano-enabled products with reduced toxicity, increased durability, or improved energy efficiency.
- Coordinate or supervise the work of suppliers or vendors in the designing, building, or testing of nanosystem devices, such as lenses or probes.
- Prepare nanotechnology-related invention disclosures or patent applications.
- Reengineer nanomaterials to improve biodegradability.
- Integrate nanotechnology with antimicrobial properties into products, such as household or medical appliances, to reduce the development of bacteria or other microbes.
- Design nanoparticle catalysts to detect or remove chemical or other pollutants from water, soil, or air.
- Develop green building nanocoatings, such as self-cleaning, anti-stain, depolluting, anti-fogging, anti-icing, antimicrobial, moisture-resistant, or ultraviolet protectant coatings.
- Design nano-based manufacturing processes to minimize water, chemical, or energy use, as well as to reduce waste production.
- Design nanosystems with components such as nanocatalysts or nanofiltration devices to clean specific pollutants from hazardous waste sites.
- Develop catalysis or other green chemistry methods to synthesize nanomaterials, such as nanotubes, nanocrystals, nanorods, or nanowires.
- Design and supervise environmental and land reclamation projects in agriculture and related industries.
- Prepare reports, sketches, working drawings, specifications, proposals, and budgets for proposed sites or systems.
- Visit sites to observe environmental problems, to consult with contractors, or to monitor construction activities.
- Meet with clients, such as district or regional councils, farmers, and developers, to discuss their needs.
- Discuss plans with clients, contractors, consultants, and other engineers so that they can be evaluated and necessary changes made.
- Test agricultural machinery and equipment to ensure adequate performance.
- Plan and direct construction of rural electric-power distribution systems, and irrigation, drainage, and flood control systems for soil and water conservation.
- Provide advice on water quality and issues related to pollution management, river control, and ground and surface water resources.
- Design structures for crop storage, animal shelter and loading, and animal and crop processing, and supervise their construction.
- Conduct educational programs that provide farmers or farm cooperative members with information that can help them improve agricultural productivity.
- Design sensing, measuring, and recording devices, and other instrumentation used to study plant or animal life.
- Design agricultural machinery components and equipment, using computer-aided design (CAD) technology.
- Design food processing plants and related mechanical systems.
- Supervise food processing or manufacturing plant operations.
- Design and supervise environmental and land reclamation projects in agriculture and related industries.
- Design fuel cycle models or processes to reduce the quantity of radioactive waste generated from nuclear activities.
- Design or develop nuclear equipment, such as reactor cores, radiation shielding, or associated instrumentation or control mechanisms.
- Monitor nuclear facility operations to identify any design, construction, or operation practices that violate safety regulations and laws or could jeopardize safe operations.
- Initiate corrective actions or order plant shutdowns in emergency situations.
- Examine accidents to obtain data for use in design of preventive measures.
- Direct operating or maintenance activities of nuclear power plants to ensure efficiency and conformity to safety standards.
- Design or oversee construction or operation of nuclear reactors, power plants, or nuclear fuels reprocessing and reclamation systems.
- Direct environmental compliance activities associated with nuclear plant operations or maintenance.
- Write operational instructions to be used in nuclear plant operation or nuclear fuel or waste handling and disposal.
- Prepare technical reports of findings or recommendations, based on synthesized analyses of test results.
- Prepare environmental impact statements, reports, or presentations for regulatory or other agencies.
- Develop or contribute to the development of plans to remediate or restore environments affected by nuclear radiation, such as waste disposal sites.
- Conduct tests of nuclear fuel behavior and cycles or performance of nuclear machinery and equipment to optimize performance of existing plants.
- Consult with other scientists to determine parameters of experimentation or suitability of analytical models.
- Recommend preventive measures to be taken in the handling of nuclear technology, based on data obtained from operations monitoring or from evaluation of test results.
- Discuss construction project proposals with interested parties, such as vendors, contractors, or nuclear facility review boards.
- Perform experiments that will provide information about acceptable methods of nuclear material usage, nuclear fuel reclamation, or waste disposal.
- Conduct environmental studies on topics such as nuclear power generation, nuclear waste disposal, or nuclear weapon deployment.
- Design or direct nuclear research projects to develop, test, modify, or discover new uses for theoretical models.
- Keep abreast of developments and changes in the nuclear field by reading technical journals or by independent study and research.
- Design fuel cycle models or processes to reduce the quantity of radioactive waste generated from nuclear activities.
- Design or program robotics systems for environmental clean-up applications to minimize human exposure to toxic or hazardous materials or to improve the quality or speed of clean-up operations.
- Review or approve designs, calculations, or cost estimates.
- Process or interpret signals or sensor data.
- Debug robotics programs.
- Build, configure, or test robots or robotic applications.
- Create back-ups of robot programs or parameters.
- Provide technical support for robotic systems.
- Design end-of-arm tooling.
- Design robotic systems, such as automatic vehicle control, autonomous vehicles, advanced displays, advanced sensing, robotic platforms, computer vision, or telematics systems.
- Supervise technologists, technicians, or other engineers.
- Design software to control robotic systems for applications, such as military defense or manufacturing.
- Conduct research on robotic technology to create new robotic systems or system capabilities.
- Investigate mechanical failures or unexpected maintenance problems.
- Integrate robotics with peripherals, such as welders, controllers, or other equipment.
- Evaluate robotic systems or prototypes.
- Install, calibrate, operate, or maintain robots.
- Conduct research into the feasibility, design, operation, or performance of robotic mechanisms, components, or systems, such as planetary rovers, multiple mobile robots, reconfigurable robots, or man-machine interactions.
- Document robotic application development, maintenance, or changes.
- Design automated robotic systems to increase production volume or precision in high-throughput operations, such as automated ribonucleic acid (RNA) analysis or sorting, moving, or stacking production materials.
- Write algorithms or programming code for ad hoc robotic applications.
- Make system device lists or event timing charts.
- Plan mobile robot paths and teach path plans to robots.
- Design robotics applications for manufacturers of green products, such as wind turbines or solar panels, to increase production time, eliminate waste, or reduce costs.
- Automate assays on laboratory robotics.
- Design or program robotics systems for environmental clean-up applications to minimize human exposure to toxic or hazardous materials or to improve the quality or speed of clean-up operations.
- Identify energy-conserving production or fabrication methods, such as by bending metal rather than cutting and welding or casting metal.
- Test performance of electromechanical assemblies, using test instruments such as oscilloscopes, electronic voltmeters, or bridges.
- Install or program computer hardware or machine or instrumentation software in microprocessor-based systems.
- Read blueprints, schematics, diagrams, or technical orders to determine methods and sequences of assembly.
- Modify, maintain, or repair electrical, electronic, or mechanical components, equipment, or systems to ensure proper functioning.
- Inspect parts for surface defects.
- Install electrical or electronic parts and hardware in housings or assemblies, using soldering equipment and hand tools.
- Verify part dimensions or clearances to ensure conformance to specifications, using precision measuring instruments.
- Fabricate or assemble mechanical, electrical, or electronic components or assemblies.
- Align, fit, or assemble component parts, using hand or power tools, fixtures, templates, or microscopes.
- Produce electrical, electronic, or mechanical drawings or other related documents or graphics necessary for electromechanical design, using computer-aided design (CAD) software.
- Select electromechanical equipment, materials, components, or systems to meet functional specifications.
- Establish and maintain inventory, records, or documentation systems.
- Develop, test, or program new robots.
- Prepare written documentation of electromechanical test results.
- Repair, rework, or calibrate hydraulic or pneumatic assemblies or systems to meet operational specifications or tolerances.
- Select and use laboratory, operational, or diagnostic techniques or test equipment to assess electromechanical circuits, equipment, processes, systems, or subsystems.
- Operate, test, or maintain robotic equipment used for green production applications, such as waste-to-energy conversion systems, minimization of material waste, or replacement of human operators in dangerous work environments.
- Determine whether selected electromechanical components comply with environmental standards and regulations.
- Develop or implement programs related to the environmental impact of engineering activities.
- Train others to install, use, or maintain robots.
- Analyze engineering designs of logic or digital circuitry, motor controls, instrumentation, or data acquisition for implementation into new or existing automated, servomechanical, or other electromechanical systems.
- Conduct statistical studies to analyze or compare production costs for sustainable and nonsustainable designs.
- Specify, coordinate, or conduct quality-control or quality-assurance programs and procedures.
- Operate metalworking machines to fabricate housings, jigs, fittings, or fixtures.
- Translate electromechanical drawings into design specifications, applying principles of engineering, thermal or fluid sciences, mathematics, or statistics.
- Assist engineers to implement electromechanical designs in industrial or other settings.
- Consult with machinists to ensure that electromechanical equipment or systems meet design specifications.
- Identify energy-conserving production or fabrication methods, such as by bending metal rather than cutting and welding or casting metal.
- Develop bioremediation processes to reduce pollution, protect the environment, or treat waste products.
- Evaluate the safety, efficiency, and effectiveness of biomedical equipment.
- Prepare technical reports, data summary documents, or research articles for scientific publication, regulatory submissions, or patent applications.
- Design or develop medical diagnostic or clinical instrumentation, equipment, or procedures, using the principles of engineering and biobehavioral sciences.
- Conduct research, along with life scientists, chemists, and medical scientists, on the engineering aspects of the biological systems of humans and animals.
- Adapt or design computer hardware or software for medical science uses.
- Maintain databases of experiment characteristics or results.
- Develop statistical models or simulations, using statistical or modeling software.
- Read current scientific or trade literature to stay abreast of scientific, industrial, or technological advances.
- Manage teams of engineers by creating schedules, tracking inventory, creating or using budgets, or overseeing contract obligations or deadlines.
- Develop models or computer simulations of human biobehavioral systems to obtain data for measuring or controlling life processes.
- Design or conduct follow-up experimentation, based on generated data, to meet established process objectives.
- Write documents describing protocols, policies, standards for use, maintenance, and repair of medical equipment.
- Communicate with bioregulatory authorities regarding licensing or compliance responsibilities.
- Develop methodologies for transferring procedures or biological processes from laboratories to commercial-scale manufacturing production.
- Collaborate with manufacturing or quality assurance staff to prepare product specification or safety sheets, standard operating procedures, user manuals, or qualification and validation reports.
- Research new materials to be used for products, such as implanted artificial organs.
- Prepare project plans for equipment or facility improvements, including time lines, budgetary estimates, or capital spending requests.
- Consult with chemists or biologists to develop or evaluate novel technologies.
- Confer with research and biomanufacturing personnel to ensure the compatibility of design and production.
- Recommend process formulas, instrumentation, or equipment specifications, based on results of bench or pilot experimentation.
- Communicate with suppliers regarding the design or specifications of bioproduction equipment, instrumentation, or materials.
- Conduct training or in-services to educate clinicians and other personnel on proper use of equipment.
- Advise hospital administrators on the planning, acquisition, and use of medical equipment.
- Analyze new medical procedures to forecast likely outcomes.
- Design and deliver technology, such as prosthetic devices, to assist people with disabilities.
- Advise manufacturing staff regarding problems with fermentation, filtration, or other bioproduction processes.
- Review existing manufacturing processes to identify opportunities for yield improvement or reduced process variation.
- Lead studies to examine or recommend changes in process sequences or operation protocols.
- Design or direct bench or pilot production experiments to determine the scale of production methods that optimize product yield and minimize production costs.
- Develop bioremediation processes to reduce pollution, protect the environment, or treat waste products.