- Model transportation scenarios to evaluate the impacts of activities such as new development or to identify possible solutions to transportation problems.
Occupations with related tasks Save Table: XLSX CSV
- Analyze, interpret, or create graphical representations of energy data, using engineering software.
- Perform energy modeling, measurement, verification, commissioning, or retro-commissioning.
- Identify and recommend energy savings strategies to achieve more energy-efficient operation.
- Conduct energy audits to evaluate energy use and to identify conservation and cost reduction measures.
- Monitor and analyze energy consumption.
- Monitor energy related design or construction issues, such as energy engineering, energy management, or sustainable design.
- Inspect or monitor energy systems, including heating, ventilating, and air conditioning (HVAC) or daylighting systems to determine energy use or potential energy savings.
- Advise clients or colleagues on topics such as climate control systems, energy modeling, data logging, sustainable design, or energy auditing.
- Verify energy bills and meter readings.
- Collect data for energy conservation analyses, using jobsite observation, field inspections, or sub-metering.
- Manage the development, design, or construction of energy conservation projects to ensure acceptability of budgets and time lines, conformance to federal and state laws, or adherence to approved specifications.
- Review architectural, mechanical, or electrical plans or specifications to evaluate energy efficiency.
- Prepare energy-related project reports or related documentation.
- Review or negotiate energy purchase agreements.
- Train personnel or clients on topics such as energy management.
- Direct the implementation of energy management projects.
- Research renewable or alternative energy systems or technologies, such as solar thermal or photovoltaic energy.
- Promote awareness or use of alternative or renewable energy sources.
- Write or install energy management routines for building automation systems.
- Recommend best fuel for specific sites or circumstances.
- Consult with construction or renovation clients or other engineers on topics such as Leadership in Energy and Environmental Design (LEED) or Green Buildings.
- Analyze, interpret, or create graphical representations of energy data, using engineering software.
- Perform energy modeling, measurement, verification, commissioning, or retro-commissioning.
- Model biological, chemical, or physical treatment processes to remove or degrade pollutants.
- Create models to demonstrate or predict the process by which pollutants move through or impact an environment.
- Maintain project logbook records or computer program files.
- Record laboratory or field data, including numerical data, test results, photographs, or summaries of visual observations.
- Perform environmental quality work in field or office settings.
- Produce environmental assessment reports, tabulating data and preparing charts, graphs, or sketches.
- Collect and analyze pollution samples, such as air or ground water.
- Decontaminate or test field equipment used to clean or test pollutants from soil, air, or water.
- Prepare and package environmental samples for shipping or testing.
- Maintain process parameters and evaluate process anomalies.
- Review technical documents to ensure completeness and conformance to requirements.
- Receive, set up, test, or decontaminate equipment.
- Prepare permit applications or review compliance with environmental permits.
- Review work plans to schedule activities.
- Assist in the cleanup of hazardous material spills.
- Inspect facilities to monitor compliance with regulations governing substances, such as asbestos, lead, or wastewater.
- Develop work plans, including writing specifications or establishing material, manpower, or facilities needs.
- Perform statistical analysis and correction of air or water pollution data submitted by industry or other agencies.
- Arrange for the disposal of lead, asbestos, or other hazardous materials.
- Evaluate and select technologies to clean up polluted sites, restore polluted air, water, or soil, or rehabilitate degraded ecosystems.
- Assess the ability of environments to naturally remove or reduce conventional or emerging contaminants from air, water, or soil.
- Work with customers to assess the environmental impact of proposed construction or to develop pollution prevention programs.
- Provide technical engineering support in the planning of projects, such as wastewater treatment plants, to ensure compliance with environmental regulations and policies.
- Oversee support staff.
- Improve chemical processes to reduce toxic emissions.
- Obtain product information, identify vendors or suppliers, or order materials or equipment to maintain inventory.
- Model biological, chemical, or physical treatment processes to remove or degrade pollutants.
- Create models to demonstrate or predict the process by which pollutants move through or impact an environment.
- Perform statistical analyses, such as social network pattern analysis, network modeling, discrete event simulation, agent-based modeling, statistical natural language processing, computational sociology, mathematical optimization, or systems dynamics.
- Apply modeling or quantitative analysis to forecast events, such as human decisions or behaviors, the structure or processes of organizations, or the attitudes or actions of human groups.
- Collect data through direct observation of work activities or witnessing the conduct of tests.
- Conduct interviews or surveys of users or customers to collect information on topics, such as requirements, needs, fatigue, ergonomics, or interfaces.
- Advocate for end users in collaboration with other professionals, including engineers, designers, managers, or customers.
- Inspect work sites to identify physical hazards.
- Prepare reports or presentations summarizing results or conclusions of human factors engineering or ergonomics activities, such as testing, investigation, or validation.
- Recommend workplace changes to improve health and safety, using knowledge of potentially harmful factors, such as heavy loads or repetitive motions.
- Perform functional, task, or anthropometric analysis, using tools, such as checklists, surveys, videotaping, or force measurement.
- Provide technical support to clients through activities, such as rearranging workplace fixtures to reduce physical hazards or discomfort or modifying task sequences to reduce cycle time.
- Assess the user-interface or usability characteristics of products.
- Establish system operating or training requirements to ensure optimized human-machine interfaces.
- Integrate human factors requirements into operational hardware.
- Review health, safety, accident, or worker compensation records to evaluate safety program effectiveness or to identify jobs with high incidence of injury.
- Design or evaluate human work systems, using human factors engineering and ergonomic principles to optimize usability, cost, quality, safety, or performance.
- Write, review, or comment on documents, such as proposals, test plans, or procedures.
- Train users in task techniques or ergonomic principles.
- Conduct research to evaluate potential solutions related to changes in equipment design, procedures, manpower, personnel, or training.
- Provide human factors technical expertise on topics, such as advanced user-interface technology development or the role of human users in automated or autonomous sub-systems in advanced vehicle systems.
- Develop or implement human performance research, investigation, or analysis protocols.
- Develop or implement research methodologies or statistical analysis plans to test and evaluate developmental prototypes used in new products or processes, such as cockpit designs, user workstations, or computerized human models.
- Estimate time or resource requirements for ergonomic or human factors research or development projects.
- Design cognitive aids, such as procedural storyboards or decision support systems.
- Analyze complex systems to determine potential for further development, production, interoperability, compatibility, or usefulness in a particular area, such as aviation.
- Investigate theoretical or conceptual issues, such as the human design considerations of lunar landers or habitats.
- Operate testing equipment, such as heat stress meters, octave band analyzers, motion analysis equipment, inclinometers, light meters, thermoanemometers, sling psychrometers, or colorimetric detection tubes.
- Perform statistical analyses, such as social network pattern analysis, network modeling, discrete event simulation, agent-based modeling, statistical natural language processing, computational sociology, mathematical optimization, or systems dynamics.
- Apply modeling or quantitative analysis to forecast events, such as human decisions or behaviors, the structure or processes of organizations, or the attitudes or actions of human groups.
- Perform hydrological analyses, using three-dimensional simulation software, to model the movement of water or forecast the dispersion of chemical pollutants in the water supply.
- Perform mathematical modeling of underground or surface water resources, such as floodplains, ocean coastlines, streams, rivers, or wetlands.
- Provide technical direction or supervision to junior engineers, engineering or computer-aided design (CAD) technicians, or other technical personnel.
- Review and critique proposals, plans, or designs related to water or wastewater treatment systems.
- Design domestic or industrial water or wastewater treatment plants, including advanced facilities with sequencing batch reactors (SBR), membranes, lift stations, headworks, surge overflow basins, ultraviolet disinfection systems, aerobic digesters, sludge lagoons, or control buildings.
- Evaluate the operation and maintenance of water or wastewater systems to identify ways to improve their efficiency.
- Design or select equipment for use in wastewater processing to ensure compliance with government standards.
- Design pumping systems, pumping stations, pipelines, force mains, or sewers for the collection of wastewater.
- Design water distribution systems for potable or non-potable water.
- Conduct water quality studies to identify and characterize water pollutant sources.
- Analyze and recommend chemical, biological, or other wastewater treatment methods to prepare water for industrial or domestic use.
- Identify design alternatives for the development of new water resources.
- Design water runoff collection networks, water supply channels, or water supply system networks.
- Design water or wastewater lift stations, including water wells.
- Conduct cost-benefit analyses for the construction of water supply systems, runoff collection networks, water and wastewater treatment plants, or wastewater collection systems.
- Provide technical support on water resource or treatment issues to government agencies.
- Conduct feasibility studies for the construction of facilities, such as water supply systems, runoff collection networks, water and wastewater treatment plants, or wastewater collection systems.
- Analyze storm water or floodplain drainage systems to control erosion, stabilize river banks, repair channel streams, or design bridges.
- Oversee the construction of decentralized or on-site wastewater treatment systems, including reclaimed water facilities.
- Develop plans for new water resources or water efficiency programs.
- Perform hydraulic analyses of water supply systems or water distribution networks to model flow characteristics, test for pressure losses, or to identify opportunities to mitigate risks and improve operational efficiency.
- Write technical reports or publications related to water resources development or water use efficiency.
- Design water storage tanks or other water storage facilities.
- Analyze and recommend sludge treatment or disposal methods.
- Design sludge treatment plants.
- Gather and analyze water use data to forecast water demand.
- Conduct environmental impact studies related to water and wastewater collection, treatment, or distribution.
- Analyze the efficiency of water delivery structures, such as dams, tainter gates, canals, pipes, penstocks, or cofferdams.
- Perform hydrological analyses, using three-dimensional simulation software, to model the movement of water or forecast the dispersion of chemical pollutants in the water supply.
- Perform mathematical modeling of underground or surface water resources, such as floodplains, ocean coastlines, streams, rivers, or wetlands.
- Develop statistical models or simulations, using statistical or modeling software.
- Develop models or computer simulations of human biobehavioral systems to obtain data for measuring or controlling life processes.
- Evaluate the safety, efficiency, and effectiveness of biomedical equipment.
- Prepare technical reports, data summary documents, or research articles for scientific publication, regulatory submissions, or patent applications.
- Design or develop medical diagnostic or clinical instrumentation, equipment, or procedures, using the principles of engineering and biobehavioral sciences.
- Conduct research, along with life scientists, chemists, and medical scientists, on the engineering aspects of the biological systems of humans and animals.
- Adapt or design computer hardware or software for medical science uses.
- Maintain databases of experiment characteristics or results.
- Read current scientific or trade literature to stay abreast of scientific, industrial, or technological advances.
- Manage teams of engineers by creating schedules, tracking inventory, creating or using budgets, or overseeing contract obligations or deadlines.
- Design or conduct follow-up experimentation, based on generated data, to meet established process objectives.
- Write documents describing protocols, policies, standards for use, maintenance, and repair of medical equipment.
- Communicate with bioregulatory authorities regarding licensing or compliance responsibilities.
- Develop methodologies for transferring procedures or biological processes from laboratories to commercial-scale manufacturing production.
- Collaborate with manufacturing or quality assurance staff to prepare product specification or safety sheets, standard operating procedures, user manuals, or qualification and validation reports.
- Research new materials to be used for products, such as implanted artificial organs.
- Prepare project plans for equipment or facility improvements, including time lines, budgetary estimates, or capital spending requests.
- Consult with chemists or biologists to develop or evaluate novel technologies.
- Confer with research and biomanufacturing personnel to ensure the compatibility of design and production.
- Recommend process formulas, instrumentation, or equipment specifications, based on results of bench or pilot experimentation.
- Communicate with suppliers regarding the design or specifications of bioproduction equipment, instrumentation, or materials.
- Conduct training or in-services to educate clinicians and other personnel on proper use of equipment.
- Advise hospital administrators on the planning, acquisition, and use of medical equipment.
- Analyze new medical procedures to forecast likely outcomes.
- Design and deliver technology, such as prosthetic devices, to assist people with disabilities.
- Advise manufacturing staff regarding problems with fermentation, filtration, or other bioproduction processes.
- Review existing manufacturing processes to identify opportunities for yield improvement or reduced process variation.
- Develop bioremediation processes to reduce pollution, protect the environment, or treat waste products.
- Lead studies to examine or recommend changes in process sequences or operation protocols.
- Design or direct bench or pilot production experiments to determine the scale of production methods that optimize product yield and minimize production costs.
- Develop statistical models or simulations, using statistical or modeling software.
- Develop models or computer simulations of human biobehavioral systems to obtain data for measuring or controlling life processes.
- Simulate or model fuel cell, motor, or other system information, using simulation software programs.
- Fabricate prototypes of fuel cell components, assemblies, stacks, or systems.
- Plan or conduct experiments to validate new materials, optimize startup protocols, reduce conditioning time, or examine contaminant tolerance.
- Provide technical consultation or direction related to the development or production of fuel cell systems.
- Characterize component or fuel cell performances by generating operating maps, defining operating conditions, identifying design refinements, or executing durability assessments.
- Plan or implement fuel cell cost reduction or product improvement projects in collaboration with other engineers, suppliers, support personnel, or customers.
- Conduct fuel cell testing projects, using fuel cell test stations, analytical instruments, or electrochemical diagnostics, such as cyclic voltammetry or impedance spectroscopy.
- Analyze fuel cell or related test data, using statistical software.
- Conduct post-service or failure analyses, using electromechanical diagnostic principles or procedures.
- Define specifications for fuel cell materials.
- Recommend or implement changes to fuel cell system designs.
- Validate design of fuel cells, fuel cell components, or fuel cell systems.
- Read current literature, attend meetings or conferences, or talk with colleagues to stay abreast of new technology or competitive products.
- Prepare test stations, instrumentation, or data acquisition systems for use in specific tests of fuel cell components or systems.
- Develop fuel cell materials or fuel cell test equipment.
- Manage fuel cell battery hybrid system architecture, including sizing of components, such as fuel cells, energy storage units, or electric drives.
- Design or implement fuel cell testing or development programs.
- Write technical reports or proposals related to engineering projects.
- Design fuel cell systems, subsystems, stacks, assemblies, or components, such as electric traction motors or power electronics.
- Identify or define vehicle and system integration challenges for fuel cell vehicles.
- Calculate the efficiency or power output of a fuel cell system or process.
- Coordinate fuel cell engineering or test schedules with departments outside engineering, such as manufacturing.
- Authorize release of fuel cell parts, components, or subsystems for production.
- Evaluate the power output, system cost, or environmental impact of new hydrogen or non-hydrogen fuel cell system designs.
- Integrate electric drive subsystems with other vehicle systems to optimize performance or mitigate faults.
- Develop or evaluate systems or methods of hydrogen storage for fuel cell applications.
- Simulate or model fuel cell, motor, or other system information, using simulation software programs.
- Fabricate prototypes of fuel cell components, assemblies, stacks, or systems.
- Perform computer simulation of solar photovoltaic (PV) generation system performance or energy production to optimize efficiency.
- Conduct engineering site audits to collect structural, electrical, and related site information for use in the design of residential or commercial solar power systems.
- Create plans for solar energy system development, monitoring, and evaluation activities.
- Design or coordinate design of photovoltaic (PV) or solar thermal systems, including system components, for residential and commercial buildings.
- Provide technical direction or support to installation teams during installation, start-up, testing, system commissioning, or performance monitoring.
- Create electrical single-line diagrams, panel schedules, or connection diagrams for solar electric systems, using computer-aided design (CAD) software.
- Review specifications and recommend engineering or manufacturing changes to achieve solar design objectives.
- Develop design specifications and functional requirements for residential, commercial, or industrial solar energy systems or components.
- Develop standard operation procedures and quality or safety standards for solar installation work.
- Create checklists for review or inspection of completed solar installation projects.
- Perform thermal, stress, or cost reduction analyses for solar systems.
- Test or evaluate photovoltaic (PV) cells or modules.
- Design or develop vacuum tube collector systems for solar applications.
- Perform computer simulation of solar photovoltaic (PV) generation system performance or energy production to optimize efficiency.
- Formulate mathematical models or other methods of computer analysis to develop, evaluate, or modify design, according to customer engineering requirements.
- Plan or conduct experimental, environmental, operational, or stress tests on models or prototypes of aircraft or aerospace systems or equipment.
- Formulate conceptual design of aeronautical or aerospace products or systems to meet customer requirements or conform to environmental regulations.
- Plan or coordinate investigation and resolution of customers' reports of technical problems with aircraft or aerospace vehicles.
- Write technical reports or other documentation, such as handbooks or bulletins, for use by engineering staff, management, or customers.
- Direct or coordinate activities of engineering or technical personnel involved in designing, fabricating, modifying, or testing of aircraft or aerospace products.
- Evaluate product data or design from inspections or reports for conformance to engineering principles, customer requirements, environmental regulations, or quality standards.
- Develop design criteria for aeronautical or aerospace products or systems, including testing methods, production costs, quality standards, environmental standards, or completion dates.
- Analyze project requests, proposals, or engineering data to determine feasibility, productibility, cost, or production time of aerospace or aeronautical products.
- Maintain records of performance reports for future reference.
- Diagnose performance problems by reviewing reports or documentation from customers or field engineers or by inspecting malfunctioning or damaged products.
- Direct aerospace research and development programs.
- Evaluate and approve selection of vendors by studying past performance or new advertisements.
- Design new or modify existing aerospace systems to reduce polluting emissions, such as nitrogen oxide, carbon monoxide, or smoke emissions.
- Design or engineer filtration systems that reduce harmful emissions.
- Evaluate biofuel performance specifications to determine feasibility for aerospace applications.
- Formulate mathematical models or other methods of computer analysis to develop, evaluate, or modify design, according to customer engineering requirements.
- Replicate the characteristics of materials and their components, using computers.
- Analyze product failure data and laboratory test results to determine causes of problems and develop solutions.
- Design and direct the testing or control of processing procedures.
- Monitor material performance, and evaluate its deterioration.
- Conduct or supervise tests on raw materials or finished products to ensure their quality.
- Evaluate technical specifications and economic factors relating to process or product design objectives.
- Modify properties of metal alloys, using thermal and mechanical treatments.
- Determine appropriate methods for fabricating and joining materials.
- Guide technical staff in developing materials for specific uses in projected products or devices.
- Review new product plans, and make recommendations for material selection, based on design objectives such as strength, weight, heat resistance, electrical conductivity, and cost.
- Supervise the work of technologists, technicians, and other engineers and scientists.
- Plan and implement laboratory operations to develop material and fabrication procedures that meet cost, product specification, and performance standards.
- Plan and evaluate new projects, consulting with other engineers and corporate executives, as necessary.
- Supervise production and testing processes in industrial settings, such as metal refining facilities, smelting or foundry operations, or nonmetallic materials production operations.
- Solve problems in a number of engineering fields, such as mechanical, chemical, electrical, civil, nuclear, and aerospace.
- Conduct training sessions on new material products, applications, or manufacturing methods for customers and their employees.
- Perform managerial functions, such as preparing proposals and budgets, analyzing labor costs, and writing reports.
- Present technical information at conferences.
- Design processing plants and equipment.
- Write for technical magazines, journals, and trade association publications.
- Teach in colleges and universities.
- Replicate the characteristics of materials and their components, using computers.
- Simulate reservoir performance for different recovery techniques, using computer models.
- Specify and supervise well modification and stimulation programs to maximize oil and gas recovery.
- Monitor production rates, and plan rework processes to improve production.
- Maintain records of drilling and production operations.
- Analyze data to recommend placement of wells and supplementary processes to enhance production.
- Assist engineering and other personnel to solve operating problems.
- Direct and monitor the completion and evaluation of wells, well testing, or well surveys.
- Develop plans for oil and gas field drilling, and for product recovery and treatment.
- Assess costs and estimate the production capabilities and economic value of oil and gas wells, to evaluate the economic viability of potential drilling sites.
- Confer with scientific, engineering, and technical personnel to resolve design, research, and testing problems.
- Interpret drilling and testing information for personnel.
- Coordinate activities of workers engaged in research, planning, and development.
- Write technical reports for engineering and management personnel.
- Evaluate findings to develop, design, or test equipment or processes.
- Test machinery and equipment to ensure that it is safe and conforms to performance specifications.
- Assign work to staff to obtain maximum utilization of personnel.
- Design and implement environmental controls on oil and gas operations.
- Supervise the removal of drilling equipment, the removal of any waste, and the safe return of land to structural stability when wells or pockets are exhausted.
- Inspect oil and gas wells to determine that installations are completed.
- Coordinate the installation, maintenance, and operation of mining and oil field equipment.
- Take samples to assess the amount and quality of oil, the depth at which resources lie, and the equipment needed to properly extract them.
- Design or modify mining and oil field machinery and tools, applying engineering principles.
- Conduct engineering research experiments to improve or modify mining and oil machinery and operations.
- Simulate reservoir performance for different recovery techniques, using computer models.
- Build models for algorithm or control feature verification testing.
- Conduct or direct system-level automotive testing.
- Provide technical direction to other engineers or engineering support personnel.
- Perform failure, variation, or root cause analyses.
- Calibrate vehicle systems, including control algorithms or other software systems.
- Design or analyze automobile systems in areas such as aerodynamics, alternate fuels, ergonomics, hybrid power, brakes, transmissions, steering, calibration, safety, or diagnostics.
- Prepare or present technical or project status reports.
- Conduct research studies to develop new concepts in the field of automotive engineering.
- Establish production or quality control standards.
- Alter or modify designs to obtain specified functional or operational performance.
- Research or implement green automotive technologies involving alternative fuels, electric or hybrid cars, or lighter or more fuel-efficient vehicles.
- Develop calibration methodologies, test methodologies, or tools.
- Create design alternatives for vehicle components, such as camless or dual-clutch engines or alternative air-conditioning systems, to increase fuel efficiency.
- Develop or implement operating methods or procedures.
- Develop engineering specifications or cost estimates for automotive design concepts.
- Conduct automotive design reviews.
- Design vehicles that use lighter materials, such as aluminum, magnesium alloy, or plastic, to improve fuel efficiency.
- Write, review, or maintain engineering documentation.
- Develop specifications for vehicles powered by alternative fuels or alternative power methods.
- Coordinate production activities with other functional units, such as procurement, maintenance, or quality control.
- Design control systems or algorithms for purposes such as automotive energy management, emissions management, or increased operational safety or performance.
- Develop or integrate control feature requirements.
- Research computerized automotive applications, such as telemetrics, intelligent transportation systems, artificial intelligence, or automatic control.
- Read current literature, attend meetings or conferences, or talk with colleagues to stay abreast of new automotive technology or competitive products.
- Design vehicles for increased recyclability or use of natural, renewable, or recycled materials in vehicle construction.
- Build models for algorithm or control feature verification testing.
- Develop or test models of alternate designs or processing methods to assess feasibility, sustainability, operating condition effects, potential new applications, or necessity of modification.
- Read and interpret blueprints, technical drawings, schematics, or computer-generated reports.
- Research, design, evaluate, install, operate, or maintain mechanical products, equipment, systems or processes to meet requirements.
- Specify system components or direct modification of products to ensure conformance with engineering design, performance specifications, or environmental regulations.
- Confer with engineers or other personnel to implement operating procedures, resolve system malfunctions, or provide technical information.
- Investigate equipment failures or difficulties to diagnose faulty operation and recommend remedial actions.
- Recommend design modifications to eliminate machine or system malfunctions.
- Research and analyze customer design proposals, specifications, manuals, or other data to evaluate the feasibility, cost, or maintenance requirements of designs or applications.
- Provide technical customer service.
- Oversee installation, operation, maintenance, or repair to ensure that machines or equipment are installed and functioning according to specifications.
- Assist drafters in developing the structural design of products, using drafting tools or computer-assisted drafting equipment or software.
- Conduct research that tests or analyzes the feasibility, design, operation, or performance of equipment, components, or systems.
- Provide feedback to design engineers on customer problems or needs.
- Write performance requirements for product development or engineering projects.
- Estimate costs or submit bids for engineering, construction, or extraction projects.
- Develop, coordinate, or monitor all aspects of production, including selection of manufacturing methods, fabrication, or operation of product designs.
- Design integrated mechanical or alternative systems, such as mechanical cooling systems with natural ventilation systems, to improve energy efficiency.
- Calculate energy losses for buildings, using equipment such as computers, combustion analyzers, or pressure gauges.
- Recommend the use of utility or energy services that minimize carbon footprints.
- Perform personnel functions, such as supervision of production workers, technicians, technologists, or other engineers.
- Apply engineering principles or practices to emerging fields, such as robotics, waste management, or biomedical engineering.
- Direct the installation, operation, maintenance, or repair of renewable energy equipment, such as heating, ventilating, and air conditioning (HVAC) or water systems.
- Select or install combined heat units, power units, cogeneration equipment, or trigeneration equipment that reduces energy use or pollution.
- Evaluate mechanical designs or prototypes for energy performance or environmental impact.
- Study industrial processes to maximize the efficiency of equipment applications, including equipment placement.
- Design test control apparatus or equipment or develop procedures for testing products.
- Establish or coordinate the maintenance or safety procedures, service schedule, or supply of materials required to maintain machines or equipment in the prescribed condition.
- Solicit new business.
- Develop or test models of alternate designs or processing methods to assess feasibility, sustainability, operating condition effects, potential new applications, or necessity of modification.
- Investigate characteristics such as cost, performance, or process capability of potential microelectromechanical systems (MEMS) device designs, using simulation or modeling software.
- Create schematics and physical layouts of integrated microelectromechanical systems (MEMS) components or packaged assemblies consistent with process, functional, or package constraints.
- Create or maintain formal engineering documents, such as schematics, bills of materials, components or materials specifications, or packaging requirements.
- Conduct analyses addressing issues such as failure, reliability, or yield improvement.
- Plan or schedule engineering research or development projects involving microelectromechanical systems (MEMS) technology.
- Propose product designs involving microelectromechanical systems (MEMS) technology, considering market data or customer requirements.
- Develop formal documentation for microelectromechanical systems (MEMS) devices, including quality assurance guidance, quality control protocols, process control checklists, data collection, or reporting.
- Communicate operating characteristics or performance experience to other engineers or designers for training or new product development purposes.
- Evaluate materials, fabrication methods, joining methods, surface treatments, or packaging to ensure acceptable processing, performance, cost, sustainability, or availability.
- Refine final microelectromechanical systems (MEMS) design to optimize design for target dimensions, physical tolerances, or processing constraints.
- Conduct harsh environmental testing, accelerated aging, device characterization, or field trials to validate devices, using inspection tools, testing protocols, peripheral instrumentation, or modeling and simulation software.
- Develop or file intellectual property and patent disclosure or application documents related to microelectromechanical systems (MEMS) devices, products, or systems.
- Conduct or oversee the conduct of prototype development or microfabrication activities to ensure compliance to specifications and promote effective production processes.
- Conduct experimental or virtual studies to investigate characteristics and processing principles of potential microelectromechanical systems (MEMS) technology.
- Devise microelectromechanical systems (MEMS) production methods, such as integrated circuit fabrication, lithographic electroform modeling, or micromachining.
- Develop or validate specialized materials characterization procedures, such as thermal withstand, fatigue, notch sensitivity, abrasion, or hardness tests.
- Validate fabrication processes for microelectromechanical systems (MEMS), using statistical process control implementation, virtual process simulations, data mining, or life testing.
- Demonstrate miniaturized systems that contain components, such as microsensors, microactuators, or integrated electronic circuits, fabricated on silicon or silicon carbide wafers.
- Manage new product introduction projects to ensure effective deployment of microelectromechanical systems (MEMS) devices or applications.
- Conduct acceptance tests, vendor-qualification protocols, surveys, audits, corrective-action reviews, or performance monitoring of incoming materials or components to ensure conformance to specifications.
- Develop or implement microelectromechanical systems (MEMS) processing tools, fixtures, gages, dies, molds, or trays.
- Develop customer documentation, such as performance specifications, training manuals, or operating instructions.
- Identify, procure, or develop test equipment, instrumentation, or facilities for characterization of microelectromechanical systems (MEMS) applications.
- Develop or validate product-specific test protocols, acceptance thresholds, or inspection tools for quality control testing or performance measurement.
- Oversee operation of microelectromechanical systems (MEMS) fabrication or assembly equipment, such as handling, singulation, assembly, wire-bonding, soldering, or package sealing.
- Consider environmental issues when proposing product designs involving microelectromechanical systems (MEMS) technology.
- Design or develop energy products using nanomaterials or nanoprocesses, such as micro-nano machining.
- Design or develop industrial air quality microsystems, such as carbon dioxide fixing devices.
- Design or develop sensors to reduce the energy or resource requirements to operate appliances, such as washing machines or dishwashing machines.
- Design sensors or switches that require little or no power to operate for environmental monitoring or industrial metering applications.
- Research or develop emerging microelectromechanical (MEMS) systems to convert nontraditional energy sources into power, such as ambient energy harvesters that convert environmental vibrations into usable energy.
- Investigate characteristics such as cost, performance, or process capability of potential microelectromechanical systems (MEMS) device designs, using simulation or modeling software.